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Manifold adaptation for constant false alarm rate
ship detection in South African oceans

C. P. Schwegmann, W. Kleynhans and B. P. Salmon

Abstract—The detection of ships at sea is a difficult task
made more so by uncooperative ships, especially when using
transponder based ship detection systems. Synthetic Aperture
Radar imagery provides a means of observation independent
of the ships cooperation and over the years a vast amount of
research has gone into the detection of ships using this imagery.
One of the most common methods used for ship detection
in Synthetic Aperture Radar imagery is the Cell-Averaging
Constant False Alarm Rate prescreening method. It uses a scalar
threshold value to determine how bright a pixel needs to be in
order to be classified as a ship and thus inversely how many
false alarms are permitted. This paper presents by a method of
converting the scalar threshold into a threshold manifold. The
manifold is adjusted using a Simulated Annealing algorithm to
optimally fit to information provided by the ship distribution
map which is generated from transponder data. By carefully
selecting the input solution and threshold boundaries, much of
the computational inefficiencies usually associated with Simulated
Annealing can be avoided. The proposed method was tested on
six ASAR images against five other methods and had a reported
detection accuracy of 85.2% with a corresponding false alarm
rate of 1.01× 10−7 .

Index Terms—Constant False Alarm Rate (CFAR), Marine
technology, Simulated annealing, Synthetic aperture radar (SAR)

I. INTRODUCTION

MARITIME surveillance is an integral part of Maritime
Domain Awareness (MDA). The surveillance of ships

at sea is important for a variety of concerns including those
related to the environment, commerce and security [1], [2].
With over 100 000 ships active at any given point in time in
the ocean [1], the detection of ships using any means possible
is important. Traditionally, ship monitoring relies on using a
transponder system [3]–[6]. These transponder systems range
from terrestrial based systems such as Automatic Identification
System (AIS) to space-based transceiver systems such as
Satellite-AIS (Sat-AIS) and Long Range Identification and
Tracking (LRIT) [4]–[6]. Ship detection using transponders
becomes difficult when either the transponders are sabotaged
or out of range (for terrestrial transponder systems). Despite
this, the immense amount of data provided by transponders
can still be useful for the creation of a ship distribution map
to profile ship movement behavior [4].
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Maritime surveillance can be accomplished by analysing
Synthetic Aperture Radar (SAR) imagery which is inde-
pendent from the required cooperation of the ships using
transponders. SAR imagery can have large swath widths, day
or night observation of an area under most weather conditions
and the distinct features of ships over the ocean made it an
attractive option for ship detection [3]–[8].

Ship (or target) detection in SAR imagery takes the form
of a multistage approach whereby each stage provides ever
stricter requirements on the ships that are accepted [5]–
[11]. Central to these detection systems is the stage known
as the ship prescreening which uses global or local means
of highlighting ships. One of the most prevalent prescreening
stages is known as the Cell Averaging Constant False Alarm
Rate (CA- CFAR) approach [4], [7], [8]. It is based on a scalar
threshold value which determines how much brighter a pixel
must be to its local surroundings to be selected as a target
or ship. Among the benefits of the CA-CFAR prescreening
stage is its low complexity and the ability to compute good
initial estimates of the target without computing the probability
density function (PDF) for each sub-window. The disadvantage
of using a single scalar threshold to define the distribution of
reflectance of the ocean is when the distribution of the sea
clutter is heterogeneous [11]. An empirical PDF can then be
computed for each sub-window to estimate if a pixel matches
the target criteria or not [7], [11]. In this paper the assumption
that a singular scalar threshold value is sufficient is discarded
by creating a constrained threshold manifold whereby each
pixel is assigned its own specific threshold. This threshold
manifold or constrained surface [12]–[14], in addition to the
local statistics within each window, provides a ship detection
method which extends the CA-CFAR method to be more
flexible whilst still avoiding the local PDF computation that
other methods require [10], [11].

The task is then to compute appropriate thresholds for
each pixel. For areas with higher average backscatter (those
close to the nadir position) lower thresholds may be necessary
whilst those further away from the nadir might require higher
threshold values. To aid in the selection of threshold values
across the manifold, a novel usage of Simulated Annealing
(SA) [15], in combination with a ship distribution map, is
presented here. Despite the efficiency of methods such as
Genetic Algorithms (GA) or Particle Swarm Optimization
(PSO), the SA produces a solution which is more intuitive
to the problem of computing the threshold manifold [16]–
[18]. The reason is that the CA-CFAR produces accurate
initial conditions for the SA to adapt quickly to an acceptable
solution, which mitigates the computational inefficiency.
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Fig. 1. Flow diagram of the system process for this experiment. An ASAR image is preprocessed by removing the land in the image and georeferencing the
image. This processed image is then prescreened using an initial CA-CFAR which is adjusted using SA. The initial solution is adjusted until there is little
change in the solution. This is then used in a second prescreening stage to produce a binary image with the detected ships centers as true values.

The organization of the paper is as follows: section II
describes the two source of data used. Section III and IV de-
scribe the system process and components used to detect ships
and section V presents the results and a discussion thereof.
Section VI concludes the paper with closing arguments related
to the method described herein.

II. DATA DESCRIPTION

A. Synthetic Aperture Radar Imagery

Six SAR images around the coast of South Africa were used
in this study. The SAR images were acquired from ENVISAT’s
ASAR sensor between February 2012 and April 2012 in VV-
polarized Wide Scan Mode (WSM). Despite the fact that a
HH-polarized set of images would have been preferred [19],
the current set of images were the only ones available for
this study. Each of the SAR images has a corresponding
expertly visually verified ground truth image indicating the
position of the large ships in the image. The images had
a spatial resolution of 75 m × 75 m with a swath width of
approximately 400 km which restricted the minimum size of
the ships. This study provides results only for ships visible at
this resolution which could include large fishing trawlers, fish
factories, cargo or fuel oil ships.

B. Transponder data

The method proposed in this paper only requires latitude
and longitude points of the ships, which can be extracted data
from AIS, SAT-AIS or LRIT data. LRIT data was used in this
study. LRIT transponders are required to transmit their position
every six hours but can be set up to send 1440 positional
messages per day per ship, making the acquisition of hundreds
of thousands of points over a year possible. The data used
in this study includes approximately 450 000 ship Latitudes
and Longitudes coordinates, recorded over the time period of
2011/03 to 2012/03 off the coast of South Africa. The data
was acquired just before the acquisition of the SAR images
and it was assumed that the ship distribution map would not
deviate significantly from the movement behavior of the ships
within the ASAR imagery.

As mentioned previously, ship or target detection requires
a multistage approach. It was assumed that no differentiation
between ships and other targets are made and that the system

can be extended to include additional processing steps using
the ship distribution map in order to separate ships and other
targets from the detections if required to do so.

The first stage of most ship detection systems is preprocess-
ing. For this study, two forms of image segmentation were
performed. The first involves removing land from the image
by separating land and sea pixels. This is done in order to
prevent incorrect detections over land as well as to reduce
land azimuthal ambiguities near the coast. The second form
of segmentation involved grouping nearby pixels into groups
so that ships of various sizes could be compared equally.
Additional preprocessing steps involving filtering were not
applied in order to reduce the possibility of altering the sea
clutter statistics as well as to prevent the removal of small
ships within the ASAR imagery.

The preprocessing step is followed by the prescreening and
ship discrimination stages. The prescreening stage is dedicated
to improving the detection accuracy whilst the ship discrimi-
nation stage attempts to further reduce the false alarms. The
method presented in this paper extends the prescreening stage
to perform further false alarm removal in lieu of a ship
discrimination stage. The ship detection method presented
here uses an initial prescreening stage followed by a second
prescreening stage with an adaptive threshold manifold to
remove false alarms. The detection system proposed in this
paper is shown in Fig. 1. The next section gives a more detailed
introduction into CFAR and the classical CFAR method known
as CA-CFAR.

C. CA-CFAR Prescreening
CA-CFAR prescreening involves selecting a threshold so

that the number of false alarms detected is kept constant. One
of the first and most widely used versions of the CFAR method
is known as the Power Ratio (PR) or Cell-Averaging CFAR
(CA-CFAR) [4], [7], [8], [10], [11], [20]. The method uses a
set of sliding spatial windows to evaluate each pixel region in
the SAR image. The windows estimate the various properties
of the current region as shown in Fig. 2. The clutter ring
estimates the mean surrounding ocean pixel backscatter value
and the region of interest is used to estimate the current pixel
or group of pixels’ mean value. If a region of interest (ROI) is
T times brighter than the surrounding pixels then it is assumed
to be a bright ROI (i.e. a ship).
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Fig. 2. Pixel neighborhood system used in this study. The mean pixel value
inside the clutter and Region of Interest (ROI) rings are calculated as µC and
µROI respectively. The clutter ring is used to represent each pixel’s mean ocean
backscatter or clutter level. The guard ring is in place to prevent corruption of
the clutter mean by objects larger than the ROI. In this study the pixel sizes
are: clutter (7× 7), guard (5× 5) and ROI (1× 1).

III. SAR SHIP DETECTION

Assuming an input ASAR intensity image I with image
dimensions X×Y where x = {0, . . . , X−1}, y = {0, . . . , Y−
1} and x, y ∈ N such that image I can be defined as [21]

I =

{{
I(x, y)

}x=X−1

x=0

}y=Y−1

y=0

(1)

=


I(0, 0) · · · I(0, Y − 1)
I(1, 0) · · · I(1, Y − 1)

...
. . .

...
I(X − 1, 0) · · · I(X − 1, Y − 1)

 . (2)

The CA-CFAR prescreening method produces a binary output
image J(I, T ) from the input image defined in (2) using

J(I, T ) =

{{
J(I, x, y, T )

}x=X−1

x=0

}y=Y−1

y=0

. (3)

where T is known as the CA-CFAR threshold and is inversely
proportional to the number of false alarms permissible. The
CA-CFAR binary image J(I, x, y, T ) is calculated with

J(I, x, y, T ) =

{
true if µratio (x, y) > T

false otherwise
. (4)

The quantity µratio (x, y) is known as the mean (power) ratio
and is defined as

µratio (x, y) =
µROI (x, y)

µC (x, y)
, (5)

µROI (x, y) and µC (x, y) are known as the mean region
of interest and mean clutter respectively and are calculated
using the window system shown in Fig. 2. Notice that the
threshold is a single value which acts equally on all pixel
values, irrespective of pixel location withing the SAR image.
The following section explains how this study extends this
single threshold to a threshold manifold to take into account
variations in pixel intensity.

A. Extending CA-CFAR Prescreening

The conventional CA-CFAR method uses a single threshold
value to determine if the current pixel ratio µratio is a ship or
not. If the threshold value is low, a vast number of pixels
will be highlighted, many of which will be false alarms. If

Fig. 3. Ratio image µratio (x, y) and two threshold manifolds, T1 and T2. The
three spikes indicate three objects that are brighter than their surroundings,
with the left two being ships and the right one being a false alarm. Using a
flat threshold manifold, the two spikes on the right can not be separated. A
non-flat manifold, such as T2, allows for discrimination between these two
ships.

the threshold value is high then the number of false alarms
will be significantly reduced but a number of valid targets
will be ignored, causing a drop in detection accuracy. The
selection of T in itself is a difficult task made more so by
the fact that a single threshold value, even when used to
discriminate between local statistics of pixels, may not be
sufficient to properly discriminate between similarly valued
mean ratio values. Fig. 3 presents an example of how a
single threshold (flat manifold) can fail on some occasions to
properly discriminate regions with the same or similar µratio
values. Pixels that are brighter than their neighbors manifest
as large values compared to others in the neighborhood. These
high ratio values appear as “spikes” in the ratio image because
µROI > µc. Fig. 3 shows three spikes found in a mean ratio
image with two threshold manifolds overlaid - one flat and the
other non-flat. A single-valued, flat manifold would not be able
to differentiate the two right-hand spikes with the same value.
With a flat threshold, either they are both accepted or rejected
as bright (ship) pixels. If we assume that the one furtherest
right is a false alarm, by extending the threshold manifold to
allow for variations in the threshold value along the manifold,
the two spikes can easily be separated by increasing the
threshold over the one that is not a ship.

The single value T can be extended to a discrete threshold
manifold or surface, constrained by the input image dimen-
sions X × Y where x = {0, . . . , X − 1}, y = {0, . . . , Y − 1}
and x, y ∈ N such that threshold manifold T can be defined
as

T =

{{
T (x, y)

}x=X−1

x=0

}y=Y−1

y=0

(6)

=


T (0, 0) · · · T (0, Y − 1)
T (1, 0) · · · T (1, Y − 1)

...
. . .

...
T (X − 1, 0) · · · T (X − 1, Y − 1)

 . (7)

This creates a discrete manifold that is bounded at the sides by
the image limits X and Y and threshold value T ∈ R+ [12],
[13]. In much the same way the various threshold surface
solutions possible in this paper all lie within the constrained
surface or discrete manifold parametrized by the two positional
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variables (x,y) and the threshold value T (akin to the two pose
variables and azimuthal lighting in [14]).

We introduce a new CA-CFAR prescreening method that
differs from previous ones [4], [8], [20]. It can be created by
extending (4) to include the new threshold manifold T (x, y).
Specifically, the output binary image J(I, x, y, T (x, y)) is
calculated with

J(I, x, y, T (x, y)) =

{
true if µratio (x, y) > T (x, y) ,

false otherwise,
(8)

where T (x, y) ∈ R+. Pixels with an associated threshold
value of T < 1.0 are ignored. The threshold value for this
study was assumed to be within the range T ∈ [1, 255]. These
bounds are important as they significantly reduce the range
of possible threshold values. The lower bound of T ≥ 1 is
derived from the fact that ships and thus thresholds need to be
at least as bright as their surroundings and the upper bound is
derived from the maximum possible pixel value of 255 for an
8-bit input grayscale image. A discussion of how a collection
of ship positions can be used unconventionally to help generate
threshold manifold values is discussed next.

B. Ship distribution map

For this study, a total of 450 000 ship positions were
collected using LRIT transponders between 2011 and 2012 and
was used as a priori information to generate a ship distribution
map [4]. A small subimage of the ship distribution map off of
the South African coast is shown in Fig. 4. Even though LRIT
data was used to generate the ship distribution map any source
of ship Latitudes and Longitudes can be used to generate the
ship distribution map.

If enough ship positions are collected over a number of
years, a daily, weekly or even monthly ship distribution map
for a given region could be generated. All 12 months of
transponder data was used to generate the ship distribution
map and it was assumed this would sufficiently model the
average movement of ships within the image’s geographical
limits.

This ship distribution map is used to assign, to each pixel
of the input image, a value which represents the likelihood of
that pixel having shipping traffic. Pixels with high associated
probabilities implies many ships transmitted their position at
that position and low associated probabilities means fewer
ships had coordinates recorded for that position. More for-
mally, given an input image I with image dimensions defined
above, the associated ship distribution map V for that image
is defined as

V =

{{
V (x, y)

}x=X−1

x=0

}y=Y−1

y=0

(9)

=


V (0, 0) · · · V (0, Y − 1)
V (1, 0) · · · V (1, Y − 1)

...
. . .

...
V (X − 1, 0) · · · V (X − 1, Y − 1)

 . (10)

Each V (x, y) is calculated by adding up the number of ship
positions found in the data at that geographical coordinate then

Fig. 4. A section of the ship distribution map generated using all 12 month’s
LRIT data within the given geographic region. The image shows the ship
distribution map off the coast of South Africa, near Mossel Bay (34.1833◦
S, 22.1333◦ E). It is interesting to note that two shipping lanes are clearly
visible as well as two oil rigs. This is due to the fact that thousands of
ship positions were collected along those lines, indicating a large number of
traversals over those points.

dividing each coordinate by the total number of coordinates
counted. This ensures that V is normalized and that the
sum of all V (x, y) is unity. In essence, this forms a 2D
histogram of Latitude and Longitude coordinates which are
then divided by the total number of coordinates to create a
ship distribution map. Once the distribution map is generated,
it can be used in a unique way to adapt an initial threshold
manifold using Simulated Annealing. If the ship distribution
map is unavailable, the current non-flat threshold manifold is
passed onto the final stage and is used to threshold the input
image to produce a final output. The ship distribution map is
therefore useful to significantly reduce the false alarm rate but
is not required in order for the method to produce results.

IV. SIMULATED ANNEALING

To adapt the threshold manifold a widely used optimization
method known as Simulated Annealing was used in conjunc-
tion with the ship distribution map [15]. Simulated Annealing
mimics the process of heating a material and allowing it
to slowly cool to reduce abnormalities in the material. The
method works by altering a currently accepted solution, testing
the validity of the new solution and then replacing the current
best solution with the new solution. The method also allows
“bad” solutions to be accepted to improve solution diversity.
A flow chart of the Simulated Annealing method is shown in
Fig. 5. The benefit of SA is that it uses a given solution to
generate further solutions. This is in contrast to other methods,
such as GA, which search the entire solution space using mul-
tiple different candidates [16], [17]. While other methods focus
on searching the entire solution space using different versions
of a number of solutions this is not required for SA because if
the initial solution is acceptable only further improvements to
the input solution are required to get a solution which provides
good results. In the case of this study, it is assumed that the
initial threshold manifold highlights all ships within the ASAR



5

imagery. This implies that the initial threshold manifold T0 is
a good starting solution because subsequent processing steps
need only remove the false alarms by increasing those pixels’
thresholds to improve performance. This intelligent starting
manifold threshold selection significantly reduces the number
of searchable ship positions from the entire image to only those
as bright as their surroundings. Subsequent steps of the SA
processes uses the ship distribution map to evaluate changes
in threshold manifold values. For the sake of brevity Ti for
i = 1, 2, . . . , N is equivalent to Ti (x, y) where N represents
the total number of Simulated Annealing steps.

A. Initial threshold manifold

The first stage of the Simulated Annealing process is to
generate an initial, acceptable solution. The initial threshold
manifold, T0, is generated by running a low, flat CA-CFAR
prescreening on the input ASAR image I such that T0 (x, y) =
J(I, x, y, T (x, y) = 1.0). This will select all areas of the input
image that have a brighter-than-average pixel value including
all ships. These positions will have an associated threshold
manifold value of T0 = 1.0 whilst all others will have have
T0 = 0.0. To correctly increase threshold manifold values
for false alarms a means of threshold manifold evaluation is
presented next.

B. Mean change in probability per ship

Simulated Annealing requires a manner to evaluate the
current solution Tcurrent and its possible replacement Ti. To do
so, some metric must be calculated for each solution. Given Ti
and I, the number of ships detected Li, the total probability
vtotal
i at time step i can be calculated. The total probability
vtotal
i is the sum of all probabilities for all the detected ship

centers across the whole image using V (x, y) at each time
step i which is computed as

vtotal
i =

X∑
a

Y∑
b

{V (a, b) | Ji (I, a, b, Ti) = true} , (11)

where Ji (I, a, b, Ti) is the input image I (x, y) processed
using the CA-CFAR with the threshold manifold Ti. Note that
total probability may change at each step because the detected
ships may change at each stage.

The mean probability per ship is

α =
vtotal

Li
. (12)

This can be extended to include the variations in the mean
probability per ship at each time step by noting the change in
α and the change in the number of ships such that the mean
change in probability per ship, βi, is

βi =
|vtotal

i − vtotal
i−1|

|Li − Li−1|+ ε
. (13)

The symbol ε is a arbitrarily small value, typically ε << 10−9.
At each time step, βi can change based on the current threshold
manifold Ti, which then directly affects the value of total
probability vtotal

i .

Once the mean change in probability βi is calculated for
a given time step, a cost function can be used decide if the
current threshold manifold Ti represents an improvement or
not. The cost function at time step i, Di, is calculated using
βi with

Di = 1− |βi − βi−1|. (14)

For the initial threshold T0 values are assumed such that D0 =
1, vtotal

0 = 0, L0 = 0 and β0 = 0. Cost function values that are
closer to one are preferable because they represent a smaller
change in mean ship probability. This is because an small
decrease in mean ship probability indicates a reduction in the
number of ships in low probability zones which are most likely
false alarms. This causes a small change in β between step i−1
and i and thus the cost function tends closer to one in those
cases. An example of this process is shown in Fig. 6. Do note
that for the sake of clarity, a flat threshold manifold is used
in this example and not the non-flat manifold as introduced in
this paper (the same principle applies).

C. Manifold adaptation

The manifold adaptation scheme used in this study estimates
the degree to which the areas of the manifold should be
adapted by using the number of ships that are neighboring
every ship. The threshold manifold is increased by a uniform
random amount inversely proportional to the number of ships
near each ship and added to the previous threshold value at
that pixel which is expressed as

Ti (a, b) =

{
Ti−1 (a, b) (15)

+

(
R ∗ 1

Z (a, b)

)
| Ji (I, a, b, Ti) = true

}
.

Z (a, b) refers to the number of ships in a square area around
the ship found in Ji (I, a, b, Ti). If no ships are found within
the area, Z (a, b) = 1. The reasoning behind the inverse
relation between the number of ships and the threshold change
is that areas with more ships should be increased slowly
as the likelihood of ships in those areas is assumed to be
more. Singular, solitary pixels’ thresholds should be increased
rapidly so that their effect on the overall mean probability can
be ascertained more quickly. If these solitary pixels are in low
probability areas then their removal will have little to no effect
on the mean probability per ship and these would typically be
assumed as false alarms and require higher threshold values.

Despite the above, a threshold with a low cost can still be
accepted if the rejected candidate’s probability of acceptance
is above a given value known as the Boltzmann probability.
The Simulated Annealing method allows for this replacement
of the “best” solution in order to prevent the process from
settling into non-optimal, local minima. To prevent this, the
temperature parameter γ is introduced which is related to the
mean threshold value. Specifically, the current temperature γi
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Fig. 5. The Simulated Annealing threshold manifold adaptation process. The process starts at i = 1 by using the intial manifold T0. The manifold is adapted
using the process described in section IV-C which generates the candidate threshold manifold. If the candidate threshold manifold fails evaluation it can still
be selected as a new, best candidate by means of the Boltzmann probability as described in section IV-C. Finally, the process is terminated when either N
steps have occurred or the change in temperature over a number of steps has stayed constant.

Fig. 6. Three flat threshold manifolds are shown with Ti (x, y) =
{2.0, 2.5, 3.0}. The ship distribution map V (x, y) is superimposed over each
image. The number of ships are L1 = 5, L2 = 4 and L3 = 2 and the total
probability is vtotal

1 = 0.5, vtotal
2 = 0.45 and vtotal

3 = 0.2 per step. Using
eq. 14 the cost values are D1 = 0, 900, D2 = 0, 950 and D3 = 0, 925.
Notice how, intuitively, the highest cost threshold T2 is the best threshold
manifold because it removes a redundant bright pixel present at T1 but does
not remove the two high probability ships like T3 does.

is equal to

γi =
100

µTi

, (16)

µTi =
1

Li

x=X−1∑
x=0

y=Y−1∑
y=0

Ti (x, y) where Ti (x, y) > 0, (17)

for i = 1 . . . N . We assume γ0 = 100 and µT0
= 1.0 because

at i = 0 all threshold values within T0 are either T = 1.0 for
highlighted pixels or T = 0.0 for the rest.

The value of µTi increases as the simulated annealing
process continues, thus decreasing the temperature γi over
time. Using the current temperature and the change in cost, a
previously rejected threshold manifold can be accepted using

the Boltzmann probability if

e
−∆D

γi > R. (18)

Where ∆D is the change in cost between the current solution
and the best solution, γi is the current temperature of the
solution and R is a random uniform real number in the range
[0, 1].

The above is repeated until the change in cost function over
a number of time steps is negligible or a number of predefined
time steps N has been reached. The final output image is
JN = J(I, TN (x, y)). The ships within this image are grouped
together, and their center positions within the image are used
to compare against the known ship positions to determine
the methods performance. Using the center position ensures
groups of nearby detections are fused in order to prevent
azimuthal ambiguities near to the ships whilst maintaining the
correct number of detections.

D. Proposed method components discussion

1) Method components: The various components of the
method proposed here have been designed in such a manner
that a selection of methods can be used in lieu of the ones
presented in this paper. The initial threshold manifold can
be generated using a number of different techniques includ-
ing Greatest-of CFAR (GO-CFAR), Smallest-of (SO-CFAR),
Order-Statistic CFAR (OS-CFAR) [8] or even by converting
unconventional methods to work for ship detection [22]. The
final performance of the method as a whole is dependent
on the properties of this input method and so it should be
selected with care. It is important to select an initial threshold
manifold generation method that provides a high detection
accuracy to ensure that subsequent steps of the proposed
method effectively remove false alarms whilst maintaining
correctly detected ships. The SA process can be replaced with
alternatives, like a GA-based method if a carefully considered
initial and subsequent solution generation scheme is devised.
Finally, the type of CFAR method used to prescreening the
image (both before and after the manifold has been generated)
is flexible and the details of this is discussed next.

2) CA-CFAR and other CFAR variants: Each of the CFAR
variants use the clutter adjacent to the test region in different
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ways. In the CA-CFAR method all of the background values
not in the guard window are considered equally and are
compared to the center pixel or ROI. By weighting each pixel
equally no preference towards brighter or darker background
pixels are given. Contrastingly, when using one of the other
statistical CFAR methods, the representation of the clutter
is formed by a single pixel, such as GO-CFAR using the
greatest pixel neighbor and SO-CFAR using the smallest pixel
neighbor. This neighborhood representation is then compared
to the ROI in the same way for the different CFAR methods
using a threshold T . Conventionally, the distinction between
which type of CFAR used is important. This is because the
different CFAR types handle different types of clutter better
or worse for a given threshold value (or a set probability of
false alarm). As mentioned in [8], SO-/GO-/OS-CFAR based
methods tend to perform better when applied to heterogeneous
clutter. However, the method proposed here extends the defi-
nition of the CA-CFAR method to allow the threshold to vary
on a per-pixel basis. By doing so, the extended CA-CFAR acts
as a variable statistic CFAR method such that for some pixels
the threshold can be set low to simulate a SO-CFAR or high
for other pixels to simulate a GO-CFAR. The standard CA-
CFAR suffers from being sensitive to either too low or too
high values in the background which skews the background
statistics and can provide unsatisfactory performance when
using a single threshold value. The variability afforded by
the threshold manifold offsets the conventional CA-CFAR’s
downside because darker or brighter pixel neighborhoods are
compensated for by changes across the threshold manifold.
It should be noted that whilst the CA-CFAR method has
been extended here, a number of CFAR forms could also
be extended to make use of the variable threshold manifold.
The CA-CFAR method used here could be replaced with the
SO-/GO-/OS-CFAR based methods by changing how µclutter
is calculated. The final threshold manifolds will look consid-
erably different between the methods because each threshold
manifold would compensate the difference between the test
ROI and background clutter representation differently through
the SA process. It is for this reason that only the CA-CFAR
and GO-CFAR are used to compare to the proposed method
in order to highlight the flexibility provided by the extended
CA-CFAR prescreening method.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments were conducted on six ASAR images with
a total of 135 ships across all images. A separate Simulated
Annealing manifold adaptation for each of the six images was
performed before applying the threshold manifold with the
lowest number of false alarms to the input image. Detection
accuracy (DA) is the percentage of correctly detected ships
given all the possible ships across the entire image. The false
alarm rate (FAR) is the number of falsely detected ship pixels
divided by the total number of sea pixels tested. Table I and
II show the results of the proposed method compared to a
conventional CA-CFAR at three different thresholds, a GO-
CFAR at two different thresholds, a standard and advanced
Otsu’s based thresholding method [23], [24] and an advanced

automatic CA-CFAR threshold selection method presented
in [4]. The parameters for the CFAR based methods had ROI,
guard and clutter sizes of 1×1, 5×5 and 7×7 respectively and
were selected based on the ship sizes expected. The standard
Otsu’s method had no parameters but the advanced Otsu’s
method required a minimum and maximum number of ships as
well as the minimum and maximum size of the ships in each
image which were set to 2, 135, 1 and 7 respectively. For the
SA a maximum number of N = 10000 steps with the initial
CA-CFAR prescreening stage using the same parameters as
the CA-CFAR method at T = 1.0 was tested.

Table I illustrates the difficulties of using a single threshold
across a number of images when compared to the proposed
method. The CA and GO variants of the CFAR prescreening
method have comparable DA performances but fail to attain
the same performances of the proposed method. Despite the
fact that the GO-CFAR variant has fewer false alarms than the
CA-CFAR the proposed method has an order of magnitude
better FAR and comparable DA as well as more consistent
FAR values. When selecting an initial threshold manifold
generation method it is important to realise that at T = 1.0
the GO-CFAR method fails to highlight every ship within the
image. Due to the way in which the final solution is obtained
this missing ship will not be identified as the SA process
continues. The flat threshold selected for the first three images
indicate that the CA-CFAR thresholds would be better selected
between T = 2.5 and T = 3.5 for the CA-CFAR and between
T = 1.0 and T = 1.5 for the GO-CFAR to achieve a better
balance between high DA and low FAR.

Table II illustrates more advanced methods compared to the
proposed method. The flat threshold CA-CFAR method can
still be effective if an intelligent selection of flat threshold
value is made per image, as is the case when using the
automatic selection of thresholds from [4]. The results of this
method are shown in the first column of Table II. This method
uses the ship distribution map to select a flat threshold for
each image separately and provides a higher level of DA and
correspondingly lower FAR compared to the basic CA-CFAR
results. The standard and advanced Otsu’s prescreening meth-
ods were selected to compare ship detection methods which
work differently to the CFAR-based methods. Both Otsu’s
methods utilize global thresholding and the advanced method
uses morphological image operations to remove false alarms.
The standard Otsu’s performed poorly, with a comparable
mean DA of 87.9% but a mean FAR of 1.015 × 10−2. This
indicates that a global-based prescreening method provides
unacceptable performance and requires significant adjustments
and/or an additional ship discrimination stage in order to be
comparable to the proposed method. This is taken note of
in [23], and this advanced Otsu’s uses a morphological based
ship discrimination stage to reduce false alarms. Using the
selected parameters, the method was able to reduce the mean
FAR of the standard Otsu’s thresholding whilst maintaining
the same mean DA. Despite this, the method failed to reduce
a significant number of the false alarms across all images and
maintained a high standard deviation for both DA and FAR.

Looking towards the proposed method we note that it had
the lowest mean FAR of all the methods tested. Compared
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TABLE I
DETECTION ACCURACY AND FALSE ALARM RATES, IN PARENTHESES, FOR A CA-CFAR USING THREE DIFFERENT THRESHOLDS, A GO-CFAR USING

TWO DIFFERENT THRESHOLDS AND THE PROPOSED METHOD.

Image CA-CFAR T = 1.0 CA-CFAR T = 2.5 CA-CFAR T = 3.5 GO-CFAR T = 1.0 GO-CFAR T = 1.5 CA-CFAR SA

Image 1 100%
(
5.170× 10−3

)
82.4%

(
1.313× 10−7

)
52.9%

(
3.282× 10−8

)
100%

(
2.085× 10−3

)
100%

(
9.281× 10−7

)
82.4%

(
1.050× 10−8

)
Image 2 100%

(
5.720× 10−3

)
88.4%

(
1.556× 10−5

)
58.1%

(
1.186× 10−5

)
100%

(
2.516× 10−3

)
100%

(
1.911× 10−6

)
83.7%

(
1.100× 10−7

)
Image 3 100%

(
4.800× 10−3

)
85.7%

(
5.415× 10−7

)
47.6%

(
4.923× 10−8

)
90.5%

(
2.320× 10−3

)
42.9%

(
9.555× 10−7

)
80.1%

(
1.150× 10−8

)
Image 4 100%

(
6.600× 10−3

)
88.9%

(
4.368× 10−7

)
88.9%

(
5.461× 10−7

)
83.3%

(
3.181× 10−3

)
27.8%

(
2.741× 10−7

)
83.3%

(
1.700× 10−7

)
Image 5 100%

(
6.250× 10−3

)
100%

(
6.875× 10−7

)
100%

(
6.875× 10−7

)
100%

(
2.936× 10−3

)
100%

(
2.688× 10−6

)
100%

(
1.995× 10−7

)
Image 6 100%

(
6.300× 10−3

)
97.6%

(
6.167× 10−6

)
85.4%

(
2.418× 10−6

)
87.8%

(
2.603× 10−3

)
80.5%

(
1.280× 10−7

)
80.0%

(
1.090× 10−7

)
Mean 100%

(
5.807× 10−3

)
90.5%

(
3.920× 10−6

)
72.2%

(
2.598× 10−6

)
93.6%

(
2.607× 10−3

)
75.2%

(
1.147× 10−6

)
85.1%

(
1.018× 10−7

)
Std dev. 0

(
7.065× 10−4

)
6.87%

(
6.146× 10−6

)
19.2%

(
4.619× 10−6

)
7.37%

(
0.400× 10−4

)
32.2%

(
9.843× 10−7

)
6.75%

(
7.849× 10−8

)
TABLE II

DETECTION ACCURACY AND FALSE ALARM RATES, IN PARENTHESES, FOR A CA-CFAR USING THREE DIFFERENT THRESHOLDS, AN AUTOMATIC
THRESHOLD SELECTION METHOD AND AN ADVANCED OTSU’S BASED METHOD VERSUS THE PROPOSED METHOD.

Image Automatic threshold Standard Otsu’s Advanced Otsu’s CA-CFAR SA

Image 1 88.2%
(
8.550× 10−8

)
82.4%

(
1.443× 10−2

)
82.4%

(
7.695× 10−7

)
82.4%

(
1.050× 10−8

)
Image 2 88.4%

(
2.581× 10−7

)
86.0%

(
3.371× 10−3

)
90.7%

(
7.643× 10−8

)
83.7%

(
1.100× 10−7

)
Image 3 85.7%

(
9.555× 10−8

)
71.4%

(
8.310× 10−3

)
76.1%

(
3.810× 10−7

)
80.1%

(
1.150× 10−8

)
Image 4 88.9%

(
3.700× 10−7

)
100%

(
1.930× 10−2

)
100%

(
9.060× 10−7

)
83.3%

(
1.700× 10−7

)
Image 5 100%

(
1.005× 10−7

)
100%

(
1.510× 10−2

)
100%

(
4.409× 10−7

)
100%

(
1.995× 10−7

)
Image 6 95.1%

(
1.21× 10−7

)
78.0%

(
2.582× 10−3

)
78.0%

(
2.755× 10−7

)
80.0%

(
1.090× 10−7

)
Mean 91.1%

(
1.718× 10−7

)
86.3%

(
1.051× 10−2

)
87.9%

(
4.749× 10−7

)
85.1%

(
1.018× 10−7

)
Std dev. 4.92%

(
1.163× 10−7

)
11.7%

(
6.814× 10−3

)
10.6%

(
3.102× 10−7

)
6.75%

(
7.849× 10−8

)

to the next best method, the automatic threshold selection
method, a drop of 6% DA was deemed acceptable for the 40%
drop in FAR. When comparing it to the third best method,
the advanced Otsu’s thresholding, the 2% drop in DA is
compensated by a fourfold increase in FAR performance. The
low standard deviation values imply that over a number of test
images the proposed method had the most consistent FAR and
third most consistent DA results. It should be noted that the
proposed method did discard a few correct ships which suggest
that future work should identify an adjustment to threshold
manifold evaluation and in order to identify when thresholds
over correct detections have been increased too much.

VI. CONCLUSION

To improve a country’s MDA a variety of different tech-
nologies must be used to monitor ships. Whilst conventional
transponder based systems are useful when the ship is co-
operative, alternative means of ship detection are required
in some case. The usage of SAR imagery for the detection
of ships at sea is a well studied topic in literature and the
methods range from global thresholding methods to statistical
estimation of local windows around ships. A novel extension
to a popular ship detection prescreening technique known as
CA-CFAR was presented in this paper. The proposed method
extends a single scalar threshold to a threshold manifold.
To help with the selection of threshold values, the paper
presents the SA optimization method in conjunction with a
ship distribution map which highlights the most traversed areas

in the ocean. This ship distribution map can be generated
from any number of ship positional sources and assists in
estimating the threshold manifold. The inefficiencies of the SA
method are avoided by selecting the results of a low threshold
CA-CFAR processed image as input along with bounding
the required threshold values. Once an acceptable threshold
manifold is generate it is applied to the input SAR image using
the extended CA-CFAR method and the results are compared
to known ship locations.

The proposed method was compared a number of other
methods: conventional CA-CFAR and GO-CFAR prescreening
at various thresholds; a standard Otsu’s prescreening method;
an automatic threshold selection method; and an advanced
Otsu’s method. The proposed method had a DA of 85.1% with
the lowest reported FAR 1.01×10−7 of all the methods tested.
Furthermore, the results indicate that the method provides
consistent performance across a number of test images with
the method providing the third lowest standard deviation
for DAs and the lowest standard deviation for FARs. The
flexibility introduced allows for a multitude of methods to be
used in places of the initial prescreening, secondary CFAR
prescreening and manifold generation. The results indicate
that the method still has room for improvement by altering
the sensitivity of the SA evaluation function to identify when
manifold threshold values for correct detections have been
increased too much.
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